Wednesday, May 22, 2019

Clustered and Non-Clustered Indexes

Clustered indexes :-
---------------------
Clustered indexes sort and store the data rows in the table based on their key values. There can only be one clustered index per table, because the data rows themselves can only be sorted in one order.

In SQL Server, indexes are organized as B-trees. Each page in an index B-tree is called an index node. The top node of the B-tree is called the root node. The bottom level of nodes in the index is called the leaf nodes. Any index levels between the root and the leaf nodes are collectively known as intermediate levels. In a clustered index, the leaf nodes contain the data pages of the underlying table. The root and intermediate level nodes contain index pages holding index rows. Each index row contains a key value and a pointer to either an intermediate level page in the B-tree, or a data row in the leaf level of the index. The pages in each level of the index are linked in a doubly-linked list.

Clustered indexes have one row in sys.partitions, with index_id = 1 for each partition used by the index. By default, a clustered index has a single partition. When a clustered index has multiple partitions, each partition has a B-tree structure that contains the data for that specific partition. For example, if a clustered index has four partitions, there are four B-tree structures; one in each partition.

Depending on the data types in the clustered index, each clustered index structure will have one or more allocation units in which to store and manage the data for a specific partition. At a minimum, each clustered index will have one IN_ROW_DATA allocation unit per partition. The clustered index will also have one LOB_DATA allocation unit per partition if it contains large object (LOB) columns. It will also have one ROW_OVERFLOW_DATA allocation unit per partition if it contains variable length columns that exceed the 8,060 byte row size limit. For more information about allocation units, see Table and Index Organization.

The pages in the data chain and the rows in them are ordered on the value of the clustered index key. All inserts are made at the point where the key value in the inserted row fits in the ordering sequence among existing rows. The page collections for the B-tree are anchored by page pointers in the sys.system_internals_allocation_units system view.

For a clustered index, the root_page column in sys.system_internals_allocation_units points to the top of the clustered index for a specific partition. SQL Server moves down the index to find the row corresponding to a clustered index key. To find a range of keys, SQL Server moves through the index to find the starting key value in the range and then scans through the data pages using the previous or next pointers. To find the first page in the chain of data pages, SQL Server follows the leftmost pointers from the root node of the index.

Levels of a clustered index


Non-clustered Index Structures :-
------------------------------------
Non-clustered indexes have the same B-tree structure as clustered indexes, except for the following significant differences:

The data rows of the underlying table are not sorted and stored in order based on their non-clustered keys.

The leaf layer of a nonclustered index is made up of index pages instead of data pages.

Nonclustered indexes can be defined on a table or view with a clustered index or a heap. Each index row in the nonclustered index contains the nonclustered key value and a row locator. This locator points to the data row in the clustered index or heap having the key value.

The row locators in nonclustered index rows are either a pointer to a row or are a clustered index key for a row, as described in the following:

If the table is a heap, which means it does not have a clustered index, the row locator is a pointer to the row. The pointer is built from the file identifier (ID), page number, and number of the row on the page. The whole pointer is known as a Row ID (RID).

If the table has a clustered index, or the index is on an indexed view, the row locator is the clustered index key for the row. If the clustered index is not a unique index, SQL Server makes any duplicate keys unique by adding an internally generated value called a uniqueifier. This four-byte value is not visible to users. It is only added when required to make the clustered key unique for use in nonclustered indexes. SQL Server retrieves the data row by searching the clustered index using the clustered index key stored in the leaf row of the nonclustered index.

Nonclustered indexes have one row in sys.partitions with index_id >0 for each partition used by the index. By default, a nonclustered index has a single partition. When a nonclustered index has multiple partitions, each partition has a B-tree structure that contains the index rows for that specific partition. For example, if a nonclustered index has four partitions, there are four B-tree structures, with one in each partition.


Depending on the data types in the nonclustered index, each nonclustered index structure will have one or more allocation units in which to store and manage the data for a specific partition. At a minimum, each nonclustered index will have one IN_ROW_DATA allocation unit per partition that stores the index B-tree pages. The nonclustered index will also have one LOB_DATA allocation unit per partition if it contains large object (LOB) columns . Additionally, it will have one ROW_OVERFLOW_DATA allocation unit per partition if it contains variable length columns that exceed the 8,060 byte row size limit. For more information about allocation units, see Table and Index Organization. The page collections for the B-tree are anchored by root_page pointers in the sys.system_internals_allocation_units system view.

Levels of a nonclustered index

No comments:

Post a Comment

SUBQUERIES PRACTISE QUESTIONS

1. Write a SQL query to find those employees who receive a higher salary than the employee with ID 7369. SELECT * FROM EMP WHERE SAL >  (...